Updating perspectives on the initiation of Bacillus anthracis growth and dissemination through its host.
نویسندگان
چکیده
Since 1957, it has been proposed that the dissemination of inhalational anthrax required spores to be transported from the lumena of the lungs into the lymphatic system. In 2002, this idea was expanded to state that alveolar macrophages act as a "Trojan horse" capable of transporting spores across the lung epithelium into draining mediastinal lymph nodes. Since then, the Trojan horse model of dissemination has become the most widely cited model of inhalational infection as well as the focus of the majority of studies aiming to understand events initiating inhalational anthrax infections. However, recent observations derived from animal models of Bacillus anthracis infection are inconsistent with aspects of the Trojan horse model and imply that bacterial dissemination patterns during inhalational infection may be more similar to the cutaneous and gastrointestinal forms than previously thought. In light of these studies, it is of significant importance to reassess the mechanisms of inhalational anthrax dissemination, since it is this form of anthrax that is most lethal and of greatest concern when B. anthracis is weaponized. Here we propose a new "jailbreak" model of B. anthracis dissemination which applies to the dissemination of all common manifestations of the disease anthrax. The proposed model impacts the field by deemphasizing the role of host cells as conduits for dissemination and increasing the role of phagocytes as central players in innate defenses, while moving the focus toward interactions between B. anthracis and lymphoid and epithelial tissues.
منابع مشابه
Determination of anthrax foci through isolation of Bacillus anthracis form soil samples of different regions of Iran
To isolate and detect anthrax spores form soil in different regions of Iran in order to find the anthrax foci‚ a total of 668 environmental specimens were collected during 2003-2004. Bacterial endospores were extracted from soil specimens via flotation in distilled water, incubation at room temperature, filtration, heat shock and culture on blood agar and selective PLET media. Bacillus anthraci...
متن کاملTwo Proteins from Snake Venom have Potent Antibacterial Effects against Bacillus anthracis and Streptococcus pneumoniae
Background: Antibacterial proteins are widely expressed in snake venoms. Previously, we have isolated two immunodominant proteins with molecular weights of 14 and 65kD from the snake venom of Naja naja oxiana (N. oxiana). It was demonstrated that they had potent inhibitory effects against gram-positive bacteria, S. aureus and B. subtilis but were less effective against gram-negative bacteria, s...
متن کاملBacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants.
Bacillus anthracis, the causative agent of anthrax, is known for its rapid proliferation and dissemination in mammalian hosts. In contrast, little information exists regarding the lifestyle of this important pathogen outside of the host. Considering that Bacillus species, including close relatives of B. anthracis, are saprophytic soil organisms, we investigated the capacity of B. anthracis spor...
متن کاملIn-vitro Evaluation of the Antibacterial and Cytotoxicity Activity of the PAD4 Antigen of Bacillus anthracis as a vaccine candidate
Introduction: Infectious diseases are one of the main causes of death worldwide. This has driven scientists to invest in extraction and identification of antimicrobial agents from natural toxins and presentation of novel antibiotics and vaccines. The aim of the current study is to investigate the antibacterial and cytotoxicity effects of the protective antigen domain 4 (PAD4) from Bacillus anth...
متن کاملSensor domains encoded in Bacillus anthracis virulence plasmids prevent sporulation by hijacking a sporulation sensor histidine kinase.
Anthrax toxin and capsule, determinants for successful infection by Bacillus anthracis, are encoded on the virulence plasmids pXO1 and pXO2, respectively. Each of these plasmids also encodes proteins that are highly homologous to the signal sensor domain of a chromosomally encoded major sporulation sensor histidine kinase (BA2291) in this organism. B. anthracis Sterne overexpressing the plasmid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 80 5 شماره
صفحات -
تاریخ انتشار 2012